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▪ Mixup boosts model performance but is challenging to use for Differential Private 
Machine Learning (DPML) due to sensitivity issues.

▪ Diffusion processes generate high-quality images, but it is not clear that how to use 
them in DPML to enhance performance.

▪ We propose techniques: DP-MIXself and DP-MIXdiff to apply Mixup and Diffusion in 
DPML and show it surpasses the prior SoTA at no extra privacy cost.

▪ Instead of per-example gradient clipping, we could use microbatch DP-SGD[2]. 
Most straightforward method to apply Mixup in DPML.

o We clip the average of microbatch’s gradients.

▪ Drawback of microbatch DP-SGD is increased sensitivity (as pointed out by 
Ponomareva et al. [3]). This requires more noise for the same privacy budget.

▪ Experiments show that it fails to improve performance even with moderately large 
privacy budget (i.e., Ɛ=8).

1. We show empirically the straightforward application of Mixup
i.e., using Microbatch DP-SGD, fails to improve performance.

2. We propose a technique called DP-MIXself to apply Mixup in DP-
SGD by using Mixup to self-augmentations of one training sample. 
This method achieves SoTA performance for training from scratch 
and finetuning pre-trained models.

3. We also propose a second technique called DP-MIXdiff to further 
enhance performance by using a text-to-image diffusion model to 
generate class-specific synthetic examples. We mixup those 
diffusion samples with real training sample to achieve new SoTA
performance with no additional privacy cost.

▪ DP-MIXself : Apply mixup to augmentations of real samples and then clip the average 
of those samples’ gradients. 

▪ DP-MIXdiff : Pretrain a private model on a public dataset using a Diffusion model. 
Generate diffusion samples with text prompts like “A photo of a <class name>”. Mix 
these samples with augmented real samples and clip the average of their gradients

▪ Pre-training on sample diffusion models does not improve performance, 
but mixing up training samples with them does.

▪ Other single-sample augmentations do not provide anywhere near as 
much of an improvement as mixup
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▪ Our proposed techniques DP-MIXself and DP-MIXdiff achieve better results 
than prior SoTA. For Caltech 256 and Oxford Pet, we achieve about 9%
test accuracy boost for ε=1.

▪ For larger privacy budgets, performance boosts decrease but still exists.

Image source: https://hoya012.github.io/blog/Bag-of-Tricks-for-Image-Classification-with-Convolutional-Neural-Networks-Review/

▪ We show how to apply mixup for DP training of ML models and demonstrate it surpasses the prior SoTA at no extra privacy cost.

▪ Other multi-sample data augmentations methods could be applied to DPML. We use public data to pretrain the diffusion model and the private model, but how 
to use public data in the most efficient way for DPML remains an open research question.
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DP-SGD steps:

1. Compute per example gradients.

2. Clip them to norm C.
3. Average clipped gradients
4. Add noise to average gradient.
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